Search results for "Biosynthetic Pathway"

showing 10 items of 31 documents

Phosphoglycerate dehydrogenase genes differentially affect Arabidopsis metabolism and development.

2021

[EN] Unlike animals, plants possess diverse L-serine (Ser) biosynthetic pathways. One of them, the Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been recently described as essential for embryo, pollen and root development, and required for ammonium and sulfur assimilation. The first and rate limiting step of PPSB is the reaction catalyzed by the enzyme phosphoglycerate dehydrogenase (PGDH). In Arabidopsis, the PGDH family consists of three genes, PGDH1, PGDH2 and PGDH3. PGDH1 is characterized as being the essential gene of the family. However, the biological significance of PGDH2 and PGDH3 remains unknown. In this manuscript, we have functionally characterized PGDH2 and PGDH3. Ph…

0106 biological sciences0301 basic medicineMutantArabidopsisPlant ScienceGenes Plant01 natural sciencesGene Expression Regulation EnzymologicSerine03 medical and health scienceschemistry.chemical_compoundSulfur assimilationBiosynthesisGene Expression Regulation PlantArabidopsisGeneticsSerinePhosphoglycerate dehydrogenaseGenePhosphoglycerate DehydrogenasePSPbiologyGeneral MedicinePhosphorylated pathway of serine biosynthesisbiology.organism_classificationBiosynthetic Pathways030104 developmental biologyPGDHBiochemistrychemistryEssential geneFISIOLOGIA VEGETALPhosphoserine phosphataseAgronomy and Crop Science010606 plant biology & botanyPlant science : an international journal of experimental plant biology
researchProduct

The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism

2021

Abstract Because it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant development is not fully understood. In this study, we examine the relative contributions of photorespiration and PPSB to providing serine for growth and metabolism in the C3 model plant Arabidopsis thaliana. Our analyses of cell proliferation and elongation reveal that PPSB-derived serine is indispensable for plant growth and its loss cannot b…

0106 biological sciences0301 basic medicineNitrogenPhysiologyNitrogen assimilationCell RespirationArabidopsisPlant DevelopmentPlant Science01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundPlant Growth RegulatorsBiosynthesisGlutamine synthetaseSerineGeneticsPhosphorylationResearch ArticlesCell Proliferationchemistry.chemical_classificationbiologyChemistryMetabolismBiosynthetic PathwaysAmino acid030104 developmental biologyBiochemistrybiology.proteinPhotorespirationGlutamine oxoglutarate aminotransferase010606 plant biology & botanyPlant Physiology
researchProduct

Retroconversion of docosapentaenoic acid (n-6): an alternative pathway for biosynthesis of arachidonic acid in Daphnia magna.

2013

The aim of this study was to assess metabolic pathways for arachidonic acid (20:4n-6) biosynthesis in Daphnia magna. Neonates of D. magna were maintained on [13C] enriched Scenedesmus obliquus and supplemented with liposomes that contained separate treatments of unlabeled docosapentaenoic acid (22:5n-6), 20:4n-6, linoleic acid (18:2n-6) or oleic acid (18:1n-9). Daphnia in the control treatment, without any supplementary fatty acids (FA) containing only trace amounts of 20:4n-6 (~0.3 % of all FA). As expected, the highest proportion of 20:4n-6 (~6.3 %) was detected in Daphnia that received liposomes supplemented with this FA. Higher availability of 18:2n-6 in the diet increased the proportio…

0106 biological sciencesLinoleic acidDaphnia magna01 natural sciencesBiochemistryDaphnia03 medical and health scienceschemistry.chemical_compoundAnimalsreproductive and urinary physiology030304 developmental biologychemistry.chemical_classification0303 health sciencesArachidonic Acidbiology010604 marine biology & hydrobiologyfungiOrganic ChemistryDocosapentaenoic Acid n-6Cell Biologybiology.organism_classificationLipid MetabolismBiosynthetic PathwaysOleic acidBiochemistrychemistryDaphniaLiposomesFatty Acids UnsaturatedArachidonic acidDocosapentaenoic acidHydrogenationPolyunsaturated fatty acidLipids
researchProduct

Genetic Diversity of O-Antigens in Hafnia alvei and the Development of a Suspension Array for Serotype Detection.

2016

Hafnia alvei is a facultative and rod-shaped gram-negative bacterium that belongs to the Enterobacteriaceae family. Although it has been more than 50 years since the genus was identified, very little is known about variations among Hafnia species. Diversity in O-antigens (O-polysaccharide, OPS) is thought to be a major factor in bacterial adaptation to different hosts and situations and variability in the environment. Antigenic variation is also an important factor in pathogenicity that has been used to define clones within a number of species. The genes that are required to synthesize OPS are always clustered within the bacterial chromosome. A serotyping scheme including 39 O-serotypes has…

0301 basic medicineGlycobiologylcsh:MedicineArtificial Gene Amplification and ExtensionGenomePolymerase Chain ReactionBiochemistryDatabase and Informatics MethodsNucleic AcidsGene clusterlcsh:SciencePhylogenyGeneticsMultidisciplinaryChromosome BiologyPolysaccharides BacterialO AntigensEnzymesMultigene FamilySequence AnalysisResearch ArticleDNA Bacterial030106 microbiologySequence DatabasesBiologyResearch and Analysis MethodsSensitivity and SpecificityChromosomesBacterial genetics03 medical and health sciencesTransferasesSequence Motif AnalysisPolysaccharidesGenetic variationAntigenic variationGeneticsSerotypingMolecular Biology TechniquesSequencing TechniquesOperonsGeneMolecular BiologyGenetic diversityCircular bacterial chromosomelcsh:RGenetic VariationReproducibility of ResultsBiology and Life SciencesProteinsHafnia alveiCell BiologyDNABiosynthetic Pathways030104 developmental biologyBiological DatabasesEnzymologylcsh:QSequence AlignmentGenome BacterialPLoS ONE
researchProduct

Targeting cellular fatty acid synthesis limits T helper and innate lymphoid cell function during intestinal inflammation and infection

2019

CD4+ T cells contribute critically to a protective immune response during intestinal infections, but have also been implicated in the aggravation of intestinal inflammatory pathology. Previous studies suggested that T helper type (Th)1 and Th17 cells depend on de novo fatty acid (FA) synthesis for their development and effector function. Here, we report that T-cell-specific targeting of the enzyme acetyl-CoA carboxylase 1 (ACC1), a major checkpoint controlling FA synthesis, impaired intestinal Th1 and Th17 responses by limiting CD4+ T-cell expansion and infiltration into the lamina propria in murine models of colitis and infection-associated intestinal inflammation. Importantly, pharmacolog…

0301 basic medicineImmunologyBiologyMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineImmune systemRAR-related orphan receptor gammamedicineAnimalsImmunology and AllergyFatty acid synthesisBarrier functionLamina propriaEffectorFatty AcidsInnate lymphoid cellT-Lymphocytes Helper-InducerNuclear Receptor Subfamily 1 Group F Member 3ColitisInflammatory Bowel DiseasesImmunity InnateBiosynthetic PathwaysDisease Models Animal030104 developmental biologymedicine.anatomical_structurechemistryImmunologyLipogenesisBiomarkersAcetyl-CoA Carboxylase030215 immunologyMucosal Immunology
researchProduct

Snapshots of a shrinking partner: Genome reduction inSerratia symbiotica

2016

AbstractGenome reduction is pervasive among maternally-inherited endosymbiotic organisms, from bacteriocyte- to gut-associated ones. This genome erosion is a step-wise process in which once free-living organisms evolve to become obligate associates, thereby losing non-essential or redundant genes/functions. Serratia symbiotica (Gammaproteobacteria), a secondary endosymbiont present in many aphids (Hemiptera: Aphididae), displays various characteristics that make it a good model organism for studying genome reduction. While some strains are of facultative nature, others have established co-obligate associations with their respective aphid host and its primary endosymbiont (Buchnera). Further…

0301 basic medicineSerratiaRNA Stability030106 microbiologyved/biology.organism_classification_rank.speciesGenomicsGenomeArticle03 medical and health sciencesRNA TransferGammaproteobacteriaCluster AnalysisAmino AcidsModel organismGene030304 developmental biologyGene RearrangementGenetics0303 health sciencesMultidisciplinarybiologyObligate030306 microbiologyved/biologyBacteriocyteGene rearrangementGene Expression Regulation Bacterialbiochemical phenomena metabolism and nutritionbiology.organism_classificationBiosynthetic PathwaysRNA Bacterial030104 developmental biologyEvolutionary biologyGenes BacterialBuchneraGenome Bacterial
researchProduct

A Two-Component regulatory system with opposite effects on glycopeptide antibiotic biosynthesis and resistance

2020

AbstractThe glycopeptide A40926, produced by the actinomycete Nonomuraea gerenzanensis, is the precursor of dalbavancin, a second-generation glycopeptide antibiotic approved for clinical use in the USA and Europe in 2014 and 2015, respectively. The final product of the biosynthetic pathway is an O-acetylated form of A40926 (acA40926). Glycopeptide biosynthesis in N. gerenzanensis is dependent upon the dbv gene cluster that encodes, in addition to the two essential positive regulators Dbv3 and Dbv4, the putative members of a two-component signal transduction system, specifically the response regulator Dbv6 and the sensor kinase Dbv22. The aim of this work was to assign a role to these two ge…

0301 basic medicinemedicine.drug_class030106 microbiologylcsh:MedicineGlycopeptide antibioticIndustrial microbiologyArticle03 medical and health sciencesBacterial ProteinsTranscription (biology)Genes RegulatorGene clustermedicinelcsh:ScienceGeneRegulator geneRegulation of gene expressionMultidisciplinaryAntimicrobialsChemistrylcsh:RGene Expression Regulation BacterialGlycopeptideAnti-Bacterial AgentsBiosynthetic PathwaysCell biologyActinobacteriaResponse regulator030104 developmental biologyMultigene FamilyTwo component regulatory system glycopeptide A40926 actinomycete Nonomuraea gerenzanensislcsh:QTeicoplaninMicrobial geneticsScientific Reports
researchProduct

De novo biosynthesis of simple aromatic compounds by an arthropod ( Archegozetes longisetosus )

2020

The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic …

10010106 biological sciencesEvolutionChemical defence010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular Biology03 medical and health scienceschemistry.chemical_compoundPolyketideBiosynthesisPolyketide synthaseAromatic amino acidsAnimalsOrganic ChemicalsSymbiosisArthropods030304 developmental biologyGeneral Environmental Science2. Zero hungerMites0303 health sciencesGeneral Immunology and MicrobiologybiologyChemistry70chemical ecologyFungi15General Medicine129Oribatid mitesShikimic acidbiology.organism_classificationArchegozetes longisetosusbiosynthetic pathwaysBiochemistryBenzenoidsHorizontal gene transferbiology.proteinGeneral Agricultural and Biological SciencesPolyketide SynthasesBacteriaResearch ArticleProceedings of the Royal Society B: Biological Sciences
researchProduct

Eight-Membered Rings With Two Heteroatoms 1,3

2022

Eight-membered rings with two heteroatoms in a 1,3-relationship, namely 1,3-diazocine, 2H-1,3-oxazocine, 2H-1,3-thiazocine, 4H-1,3-dioxocin, 4H-1,3-oxathiocin, and 4H-1,3-dithiocin, are discussed in this chapter, that covers the literature from 2007 to October 2020 (SciFindern search) and reports the chemistry of uncondensed derivatives, heterocines fused to carbocycles and heterocycles, as well as bridged heterocines. Among eight-membered 1,3-diheterocines, 1,3-diazocines and 1,3-oxazocines are the two largest classes, based on the number of publications, mostly due to the studies of the synthesis of these cyclic systems, their pharmacological properties and/or their important industrial a…

Anti-HIV agentsCold-menthol receptor TRPM8 modulators13-DiazocineCholesterylester transfer protein (CETP) inhibitors4H-13-DithiocinSettore CHIM/08 - Chimica FarmaceuticaHistone deacetylase 6 inhibitorsEquilibrative nucleoside transporter 1 (ENT1) inhibitors4H-13-OxathiocinAnticancer agents4H-13-Dioxocin2H-13-OxazocineBiosynthetic pathways of 1 3-heterocines2H-13-Thiazocine
researchProduct

Diversity and Evolution of the Phenazine Biosynthesis Pathway

2010

ABSTRACT Phenazines are versatile secondary metabolites of bacterial origin that function in biological control of plant pathogens and contribute to the ecological fitness and pathogenicity of the producing strains. In this study, we employed a collection of 94 strains having various geographic, environmental, and clinical origins to study the distribution and evolution of phenazine genes in members of the genera Pseudomonas , Burkholderia , Pectobacterium , Brevibacterium , and Streptomyces . Our results confirmed the diversity of phenazine producers and revealed that most of them appear to be soil-dwelling and/or plant-associated species. Genome analyses and comparisons of phylogenies inf…

Antifungal Agentsgenome sequenceaeruginosa pao1virulence factorsphenazine-1-carboxylic acidVIRULENCE FACTORS GENE-CLUSTERApplied Microbiology and Biotechnologychemistry.chemical_compoundGene clusterEnvironmental MicrobiologyPhylogenySoil Microbiologyfluorescent pseudomonas2. Zero hungerGenetics0303 health sciencesEcologybiologyEPS-2PseudomonasPlants[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyMultigene FamilyHorizontal gene transferBiotechnologyDNA BacterialWashingtonPectobacteriumGene Transfer HorizontalGenotypeSequence analysisMolecular Sequence DataPhenazineerwinia-herbicola eh1087pseudomonas-chlororaphis pcl1391Evolution Molecular03 medical and health sciencesBacterial ProteinsPseudomonasBotanyEscherichia coli030304 developmental biologyBacteriaBase SequencePSEUDOMONAS-CHLORORAPHIS030306 microbiologybiological-controlGene Expression Regulation BacterialSequence Analysis DNA15. Life on landbiology.organism_classificationrpoBERWINIA-HERBICOLAPHENAZINEBiosynthetic Pathwaysgene-clusterLaboratorium voor PhytopathologieBurkholderiachemistryGenes BacterialLaboratory of PhytopathologyPhenazinesburkholderia-cepacia complexSequence AlignmentFood Science
researchProduct