Search results for "Biosynthetic Pathway"

showing 10 items of 31 documents

Diversity and Evolution of the Phenazine Biosynthesis Pathway

2010

ABSTRACT Phenazines are versatile secondary metabolites of bacterial origin that function in biological control of plant pathogens and contribute to the ecological fitness and pathogenicity of the producing strains. In this study, we employed a collection of 94 strains having various geographic, environmental, and clinical origins to study the distribution and evolution of phenazine genes in members of the genera Pseudomonas , Burkholderia , Pectobacterium , Brevibacterium , and Streptomyces . Our results confirmed the diversity of phenazine producers and revealed that most of them appear to be soil-dwelling and/or plant-associated species. Genome analyses and comparisons of phylogenies inf…

Antifungal Agentsgenome sequenceaeruginosa pao1virulence factorsphenazine-1-carboxylic acidVIRULENCE FACTORS GENE-CLUSTERApplied Microbiology and Biotechnologychemistry.chemical_compoundGene clusterEnvironmental MicrobiologyPhylogenySoil Microbiologyfluorescent pseudomonas2. Zero hungerGenetics0303 health sciencesEcologybiologyEPS-2PseudomonasPlants[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyMultigene FamilyHorizontal gene transferBiotechnologyDNA BacterialWashingtonPectobacteriumGene Transfer HorizontalGenotypeSequence analysisMolecular Sequence DataPhenazineerwinia-herbicola eh1087pseudomonas-chlororaphis pcl1391Evolution Molecular03 medical and health sciencesBacterial ProteinsPseudomonasBotanyEscherichia coli030304 developmental biologyBacteriaBase SequencePSEUDOMONAS-CHLORORAPHIS030306 microbiologybiological-controlGene Expression Regulation BacterialSequence Analysis DNA15. Life on landbiology.organism_classificationrpoBERWINIA-HERBICOLAPHENAZINEBiosynthetic Pathwaysgene-clusterLaboratorium voor PhytopathologieBurkholderiachemistryGenes BacterialLaboratory of PhytopathologyPhenazinesburkholderia-cepacia complexSequence AlignmentFood Science
researchProduct

Does the renin-angiotensin system also regulate intra-ocular pressure?

2009

The renin-angiotensin-aldosterone system is known to play an essential role in controlling sodium balance and body fluid volumes, and thus blood pressure. In addition to the circulating system which regulates urgent cardiovascular responses, a tissue-localized renin-angiotensin system (RAS) regulates long-term changes in various organs. Many recognized RAS components have also been identified in the human eye. The highly vasoconstrictive angiotensin II (Ang II) is considered the key peptide in the circulatory RAS. However, the ultimate effect of RAS activation at tissue level is more complex, being based not only on the biological activity of Ang II but also on the activities of other produ…

medicine.medical_specialty030204 cardiovascular system & hematologyPeptide hormoneRenin-Angiotensin System03 medical and health sciences0302 clinical medicineInternal medicineRenin–angiotensin systemMedicineAnimalsHumansIntraocular Pressurebiologybusiness.industryAngiotensin-converting enzymeBiological activityGeneral MedicineWater-Electrolyte BalanceAngiotensin IIBiosynthetic PathwaysBlood pressureEndocrinologyACE inhibitorCirculatory system030221 ophthalmology & optometrybiology.proteinOcular Hypertensionbusinessmedicine.drugAnnals of medicine
researchProduct

The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism

2021

Abstract Because it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant development is not fully understood. In this study, we examine the relative contributions of photorespiration and PPSB to providing serine for growth and metabolism in the C3 model plant Arabidopsis thaliana. Our analyses of cell proliferation and elongation reveal that PPSB-derived serine is indispensable for plant growth and its loss cannot b…

0106 biological sciences0301 basic medicineNitrogenPhysiologyNitrogen assimilationCell RespirationArabidopsisPlant DevelopmentPlant Science01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundPlant Growth RegulatorsBiosynthesisGlutamine synthetaseSerineGeneticsPhosphorylationResearch ArticlesCell Proliferationchemistry.chemical_classificationbiologyChemistryMetabolismBiosynthetic PathwaysAmino acid030104 developmental biologyBiochemistrybiology.proteinPhotorespirationGlutamine oxoglutarate aminotransferase010606 plant biology & botanyPlant Physiology
researchProduct

Identification of the phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis

2013

[EN] Three different pathways of serine (Ser) biosynthesis have been described in plants: the Glycolate pathway, which is part of the Photorespiratory pathway, and 2 non-Photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Ser Biosynthesis (PPSB) has been known to exist since the 1950s, but its biological relevance was not revealed until quite recently when the last enzyme of the pathway, the Phosphoserine Phosphatase, was functionally characterized. In the associated study1, we characterized a family of genes coding for putatite phosphoglycerate dehydrogenases (PGDH, 3-PGDH, and EDA9), the first enzyme of the PPSB. A metabolomics study usi…

Male gametophyteShort CommunicationArabidopsisPlant ScienceBiologyEmbryo developmentGenes PlantGene Expression Regulation EnzymologicSerinechemistry.chemical_compoundBiosynthesisGene Expression Regulation PlantArabidopsisBIOQUIMICA Y BIOLOGIA MOLECULARSerinePhosphoglycerate dehydrogenasePhosphorylationGenePhosphoglycerate DehydrogenasePhosphoglycerate dehydrogenasePhosphoglycerate kinaseGenes EssentialArabidopsis ProteinsPhosphoserine phosphatasePhosphorylated pathway of serine biosynthesisbiology.organism_classificationBiosynthetic PathwaysIsoenzymeschemistryBiochemistryEssential geneSeedsPollen
researchProduct

The phosphorylated pathway of serine biosynthesis is essential both for male gametophyte and embryo development and for root growth in Arabidopsis.

2013

This study characterizes the phosphorylated pathway of Ser biosynthesis (PPSB) in Arabidopsis thaliana by targeting phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Lack of PSP1 activity delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of psp1 mutants could be complemented with PSP1 cDNA under the control of Pro35S (Pro35S:PSP1). However, this construct, which was poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in psp1.1/psp1.1 Pro35S:PSP1 arrested at the polarized stage. The tapetum from these lines displayed delayed and irregular devel…

MutantCitric Acid CycleGreen Fluorescent ProteinsImmunoblottingArabidopsisPlant ScienceBiologyPlant RootsSerineMicrosporeMicroscopy Electron TransmissionGene Expression Regulation PlantArabidopsisSerineArabidopsis thalianaAmino AcidsPhosphorylationResearch ArticlesTapetumArabidopsis ProteinsReverse Transcriptase Polymerase Chain ReactionGene Expression Regulation DevelopmentalEmbryoPhosphoserine phosphataseCell Biologybiology.organism_classificationPlants Genetically ModifiedPhosphoric Monoester HydrolasesBiosynthetic PathwaysBiochemistryMicroscopy FluorescenceMutationSeedsPollenGlycolysisThe Plant cell
researchProduct

Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation

2015

During fermentation oenological yeast cells are subjected to a number of different stress conditions and must respond rapidly to the continuously changing environment of this harsh ecological niche. In this study we gained more insights into the cell adaptation mechanisms by linking proteome monitoring with knowledge on physiological behaviour of different strains during fermentation under model winemaking conditions. We used 2D-DIGE technology to monitor the proteome evolution of two newly discovered environmental yeast strains Saccharomyces bayanus and triple hybrid Saccharomyces cerevisiae × Saccharomyces kudriavzevii × S. bayanus and compared them to data obtained for the commercially a…

Proteomics0301 basic medicineProteomeSaccharomyces cerevisiaeSaccharomyces bayanusWineSaccharomyces cerevisiaeBiologyBiochemistrySaccharomycesFungal ProteinsTwo-Dimensional Difference Gel ElectrophoresisSaccharomyces03 medical and health sciencesStress PhysiologicalAmino AcidsMolecular BiologyEthanolCell redox homeostasisbiology.organism_classificationYeastStuck fermentationBiosynthetic PathwaysProtein TransportYeast in winemaking030104 developmental biologyBiochemistryFermentationProteolysisGlycolysisOxidation-ReductionSaccharomyces kudriavzeviiPROTEOMICS
researchProduct

Biosynthesis of Sinapigladioside, an Antifungal Isothiocyanate from Burkholderia Symbionts

2021

Abstract Sinapigladioside is a rare isothiocyanate‐bearing natural product from beetle‐associated bacteria (Burkholderia gladioli) that might protect beetle offspring against entomopathogenic fungi. The biosynthetic origin of sinapigladioside has been elusive, and little is known about bacterial isothiocyanate biosynthesis in general. On the basis of stable‐isotope labeling, bioinformatics, and mutagenesis, we identified the sinapigladioside biosynthesis gene cluster in the symbiont and found that an isonitrile synthase plays a key role in the biosynthetic pathway. Genome mining and network analyses indicate that related gene clusters are distributed across various bacterial phyla including…

Burkholderia gladioliAntifungal AgentsBurkholderianatural productsMolecular ConformationMutagenesis (molecular biology technique)Microbial Sensitivity Tests010402 general chemistry01 natural sciencesBiochemistrychemistry.chemical_compoundBiosynthesisVery Important PaperIsothiocyanatesGene clustergenome miningBacterial phylaMolecular Biologybiology010405 organic chemistryCommunicationOrganic Chemistrybiology.organism_classificationCommunications0104 chemical sciencesBiosynthetic PathwaysBurkholderiaBiochemistrychemistryIsothiocyanateHypocrealesMolecular MedicinebiosynthesisisothiocyanateBacteriaChembiochem
researchProduct

Snapshots of a shrinking partner: Genome reduction inSerratia symbiotica

2016

AbstractGenome reduction is pervasive among maternally-inherited endosymbiotic organisms, from bacteriocyte- to gut-associated ones. This genome erosion is a step-wise process in which once free-living organisms evolve to become obligate associates, thereby losing non-essential or redundant genes/functions. Serratia symbiotica (Gammaproteobacteria), a secondary endosymbiont present in many aphids (Hemiptera: Aphididae), displays various characteristics that make it a good model organism for studying genome reduction. While some strains are of facultative nature, others have established co-obligate associations with their respective aphid host and its primary endosymbiont (Buchnera). Further…

0301 basic medicineSerratiaRNA Stability030106 microbiologyved/biology.organism_classification_rank.speciesGenomicsGenomeArticle03 medical and health sciencesRNA TransferGammaproteobacteriaCluster AnalysisAmino AcidsModel organismGene030304 developmental biologyGene RearrangementGenetics0303 health sciencesMultidisciplinarybiologyObligate030306 microbiologyved/biologyBacteriocyteGene rearrangementGene Expression Regulation Bacterialbiochemical phenomena metabolism and nutritionbiology.organism_classificationBiosynthetic PathwaysRNA Bacterial030104 developmental biologyEvolutionary biologyGenes BacterialBuchneraGenome Bacterial
researchProduct

A Two-Component regulatory system with opposite effects on glycopeptide antibiotic biosynthesis and resistance

2020

AbstractThe glycopeptide A40926, produced by the actinomycete Nonomuraea gerenzanensis, is the precursor of dalbavancin, a second-generation glycopeptide antibiotic approved for clinical use in the USA and Europe in 2014 and 2015, respectively. The final product of the biosynthetic pathway is an O-acetylated form of A40926 (acA40926). Glycopeptide biosynthesis in N. gerenzanensis is dependent upon the dbv gene cluster that encodes, in addition to the two essential positive regulators Dbv3 and Dbv4, the putative members of a two-component signal transduction system, specifically the response regulator Dbv6 and the sensor kinase Dbv22. The aim of this work was to assign a role to these two ge…

0301 basic medicinemedicine.drug_class030106 microbiologylcsh:MedicineGlycopeptide antibioticIndustrial microbiologyArticle03 medical and health sciencesBacterial ProteinsTranscription (biology)Genes RegulatorGene clustermedicinelcsh:ScienceGeneRegulator geneRegulation of gene expressionMultidisciplinaryAntimicrobialsChemistrylcsh:RGene Expression Regulation BacterialGlycopeptideAnti-Bacterial AgentsBiosynthetic PathwaysCell biologyActinobacteriaResponse regulator030104 developmental biologyMultigene FamilyTwo component regulatory system glycopeptide A40926 actinomycete Nonomuraea gerenzanensislcsh:QTeicoplaninMicrobial geneticsScientific Reports
researchProduct

Retroconversion of docosapentaenoic acid (n-6): an alternative pathway for biosynthesis of arachidonic acid in Daphnia magna.

2013

The aim of this study was to assess metabolic pathways for arachidonic acid (20:4n-6) biosynthesis in Daphnia magna. Neonates of D. magna were maintained on [13C] enriched Scenedesmus obliquus and supplemented with liposomes that contained separate treatments of unlabeled docosapentaenoic acid (22:5n-6), 20:4n-6, linoleic acid (18:2n-6) or oleic acid (18:1n-9). Daphnia in the control treatment, without any supplementary fatty acids (FA) containing only trace amounts of 20:4n-6 (~0.3 % of all FA). As expected, the highest proportion of 20:4n-6 (~6.3 %) was detected in Daphnia that received liposomes supplemented with this FA. Higher availability of 18:2n-6 in the diet increased the proportio…

0106 biological sciencesLinoleic acidDaphnia magna01 natural sciencesBiochemistryDaphnia03 medical and health scienceschemistry.chemical_compoundAnimalsreproductive and urinary physiology030304 developmental biologychemistry.chemical_classification0303 health sciencesArachidonic Acidbiology010604 marine biology & hydrobiologyfungiOrganic ChemistryDocosapentaenoic Acid n-6Cell Biologybiology.organism_classificationLipid MetabolismBiosynthetic PathwaysOleic acidBiochemistrychemistryDaphniaLiposomesFatty Acids UnsaturatedArachidonic acidDocosapentaenoic acidHydrogenationPolyunsaturated fatty acidLipids
researchProduct